
Low-Complexity Secure Protocols to Defend
Cyber-Physical Systems Against

Network Isolation Attacks
Dong-Hoon Shin∗, Jinkyu Koo†, Lei Yang∗, Xiaojun Lin†, Saurabh Bagchi†, and Junshan Zhang∗

∗School of Electrical, Computer and Energy Engineering, Arizona State University, USA
†School of Electrical and Computer Engineering, Purdue University, USA
Email: donghoon.shin.2@asu.edu, kooj@purdue.edu, lyang55@asu.edu,

{linx, sbagchi}@purdue.edu, junshan.zhang@asu.edu

Abstract—This paper studies the network isolation attack, a
devastating type of attacks on cyber-physical systems. In this
attack, an adversary compromises a set of nodes that enclosea
region in order to isolate the region from the rest of the network.
Assuming that the compromised nodes wish not to be detected,we
propose a solution to defend against the network isolation attack.
Our goal is to achieve the following security guarantee: either
a legitimate node can successfully deliver a message to another
legitimate node, or the network control center can identify a
small set of suspect nodes, which are guaranteed to contain
a compromised node. Toward achieving this goal, we develop
two protocols: one is for secure delivery of messages among
nodes and the other is for secure collection of messages from
nodes at the network control center. We show that our proposed
protocols are provably secure, i.e., attain the aforementioned
security guarantee. Further, our protocols achieve this guarantee
with overhead that is orders-of-magnitude smallerthan existing
baseline protocols. Our proposed protocols are thus scalable for
large networks.

I. I NTRODUCTION

With the growth of networked computing technologies,
the capabilities of computation and communication are being
deeply embedded in physical systems. Such a tight integration
of physical systems and advanced computing technologies is
leading to a new generation of engineered systems, called
Cyber-Physical Systems(CPS). A CPS harnesses the new
capabilities of computation and communication to control
and manage the physical systems, thereby providing highly
dependable, efficient and performance-enhanced systems. CPS
can potentially benefit various applications and areas, includ-
ing electric grid, health care, transportation and military.

Although CPS can benefit greatly from the use of com-
munication and networking technologies, they also become
increasingly dependent upon the communication network for
the operation of the physical system. CPS thus give rise to
additional security vulnerabilities. Moreover, in many cases,
CPS serve as the critical infrastructures to the public, such as
electricity, water, oil and gas. This makes the communication
networks for CPS a major target for adversaries (e.g., terror-
ists) who intend to cause severe damage to a large population.

One type of attacks that can cause a devastating damage
to CPS isnetwork isolation attackor simply isolation attack,

where a set of compromised nodes would result in the isolation
of a region from the rest of the network. The isolation attack
can be viewed as a form of coordinated black-hole (or packet-
dropping) attacks. In the attacks, an adversary compromises a
set of nodes that enclose a region. It can then disconnect the
nodes in the region from those outside the region by dropping
all packets coming into, or going out of, the region. Here,
the compromised nodes could behave more intelligently by
selectively dropping packets or mixing with other malicious
activities such as modifying and delaying packets. Further, if
the adversary is powerful, the compromised nodes can collude
with each other to launch a stronger form of attacks, e.g.,
wormhole attack. In general, it would be very difficult to
protect the network against this kind of massive attacks. Once
such an isolation attack is launched, it can cause serious dam-
age to the system, which can lead to a critical system failure
when the isolated region is large. Moreover, an adversary can
incur serious damage to network with a (relatively) small cost,
i.e., by targeting a small number of topologically-critical nodes
(i.e., hub nodes) to launch the isolation attack.1

Defending networks against malicious activities has been
studied extensively in the literature. Nevertheless, the existing
works have paid little attention to the isolation attack, perhaps
because it is an “extreme” form of attack, in the sense that
once it is launched, there are few ways to protect the network
against compromised nodes. In fact, one can argue that thereis
no solution that can ensure communication among (legitimate)
nodes under the isolation attack. This is because multi-hop
communications among nodes must go through other possibly
compromised nodes, and these nodes can arbitrarily deny the
service and not follow any protocol. Indeed, once an adversary
completely encloses an isolated region, no communication
would be possible between a node within the isolated region
and a node outside the isolated region.

In view of the severe damage caused by potential isolation
attacks, we would have liked to develop a protocol to achieve
the following ideal guarantee: no matter what forms of iso-

1In general, half the nodes in the network could be disconnected from the
other half byO(

√
n) number of compromised nodes, wheren is the total

number of nodes in the network.

2

lation attacks are launched, our protocol can always ensure
communication between legitimate nodes. Unfortunately, this
guarantee is impossible to achieve as aforementioned. To make
progress, we need to impose some additional restrictions on
the adversary. Indeed, such restrictions should be as mild
as possible so that it is applicable to cover a large number
of scenarios. In this paper, we impose such a restriction of
a “perfect crime” on the adversary, i.e., the compromised
nodes wish not to be detected by the defensive measures
of the network. This scenario is of great interest because
once detected, the compromised nodes can be removed by
technicians (or soldiers in battle-fields) dispatched by the
central authority (or the command center). Hence, assuming
it is not always an easy task to compromise a legitimate
node (e.g., through the use of reasonable security mechanisms
such as anti-tamper hardware), the adversary would have liked
not to be detected when engaging in malicious actions. This
implies that, assuming the perfect-crime restriction on the
adversary, if we can always identify a subset of compromised
nodes whenever they behave adversarially, we can then force
them to follow the correct behavior.

Under this perfect-crime assumption, our objective in this
paper is to build a system that can ensure communications
between legitimate nodes when there are no malicious activ-
ities; however, if the adversary ever misbehaves and violates
the protocol, the system would identify a small set of suspect
nodes that must contain at least one compromised node. Once
we build such a system, the adversary must either follow the
network protocol, or expose one of its compromised nodes
to the system administrator, who can then remove it. We
emphasize that even this weaker notion of security guarantee
could be difficult to attain. As compromised nodes can collude
to launch stronger attacks, one may not be able to identify the
culprit, especially under the setting when a majority of nodes
in a local neighborhood are malicious [1].

Further, a primary goal here is to not only build such a sys-
tem that accomplishes the above security objective under the
isolation attack, but also minimize the complexity of the sys-
tem so that the system is scalable for large networks. Toward
achieving this goal, we develop the following two protocols:
Low-complexity Secure Delivery Protocol(LSDP) andLow-
complexity Secure Collection Protocol(LSCP). LSDP allows a
legitimate source tosecurely delivera message to a legitimate
destination, while LSCP allows a legitimate source tosecurely
collect (and deliver) messages from intermediate nodes on a
path (to a legitimate destination). Here, by “secure delivery”
and “secure collection”, we mean that they can achieve the
aforementioned security guarantee. We show that the overhead
of the two protocols isorders-of-magnitude smallerthan that
of a straightforward approach—which extends the underlying
schemes in existing works in a straightforward manner.To
the best of our knowledge, this paper is the first attempt to
provide such security guarantees under the isolation attack,

under general network settings2.
The rest of the paper is organized as follows. Section II

introduces the network and the attack model. Section III
describes a formal definition of our design objective and the
research challenge in this paper. Sections IV and V present
the two basic protocols that we develop—LSDP and LSCP—
and prove their security guarantees. Section VI analyzes the
overhead of the proposed protocols. Section VII presents
performance evaluation of the proposed protocols. SectionVIII
discusses prior works related to this paper. Finally, Section IX
gives conclusions and discusses future works.

II. N ETWORK AND ATTACK MODEL

A. Network Model

We consider a stationary network, where nodes do not move
and are connected via wireless or wired links. A set of nodes
in the network, calledcollecting stations(CSs), are deployed
to collect emergency messages or reports from nodes. We state
a few assumptions on the security capabilities of nodes and
the setting that we are interested in. Nodes are legitimate
when they are deployed, but they may be compromised as
time goes by (as commonly assumed in the literature). For
example, nodes can be compromised during software update,
or can be physically tampered if they are deployed in insecure
locations (e.g., mesh routers deployed on rooftops or street-
lights). CSs are trustworthy, i.e., are protected from attacks
by an adversary. There exists a Certification Authority (CA)
that administrates a public-key infrastructure. Every node thus
knows the public key of every other node. Further, the private
key of a legitimate (i.e., uncompromised) node is only known
to itself. Each pair of neighboring nodes has a shared secret
key (established during their neighbor discovery phase). Thus,
two neighboring nodes are capable of generating message
authentication codes (MACs) to authenticate and provide in-
tegrity on messages between them.

B. Considered Attack

We consider the Byzantine adversary model, i.e., compro-
mised nodes can perform arbitrary malicious activities, such
as (selectively) dropping, modifying and delaying packets, and
even wormhole attacks. Under this adversarial model, we focus
on an attack launched by a set of compromised nodes to isolate
a region from the rest of the network. We refer to this attack
as thenetwork isolation attack(or simply, isolation attack).
Figure 1 illustrates two forms of isolation attack in wireless
networks. The first form (in Fig. 1(a)), calledring isolation
attack, is launched by enclosing a region by a strip filled with
compromised nodes. The second form (in Fig. 1(b)), calledbar

2Our prior work [2] has previously provided a similar security guarantee
to that of this paper. However, the work [2] focuses on a different problem:
timely and secure delivery of event reports to a base stationin wireless sensor
networks. On the other hand, this paper targets more generalapplication
settings, i.e., any-to-any communication, and focuses on reducing the overhead
targeting for large networks. Besides, this paper has a verydifferent solution
approach from [2]: This paper presentson-demandprotocols whereas [2]
presents aproactiveprotocol. (Refer to Section VIII for detailed discussion.)

3

(a) Ring isolation attack. (b) Bar isolation attack.

Fig. 1. Isolation attacks.

isolation, is launched more efficiently than the ring isolation
by exploiting the network boundary.

In wireless networks, an adversary can also isolate a region
by launching a coordinated jamming attack. However, for
the ease of exposition, we assume that the physical layer
uses jamming-resilient schemes, such as spread-spectrum tech-
niques (as in the 802.11), to defend against jamming attacks.

III. D ESIGN OBJECTIVE AND RESEARCHCHALLENGE

In this section, we first define our design objective and then
discuss the main research challenges that this paper addresses.

A. Design Objective

We first define some terminologies.

Definition 1: A message is said to becorrectly delivered
if the message is delivered to the destination within a time
bound and without being modified. Also, a message is said to
besecurely deliveredto the destination if either the message is
correctly delivered, or the source can narrow down to a set of
at most twosuspectnodes, where at least one of the suspect
nodes must be a compromised node.

Here, the compromised node would be either the culprit node
that disrupted the message delivery, or another compromised
node that colluded with the culprit node. We call the set of
suspect nodes thesuspect set. If the suspect set contains a
single node, then the node must be compromised. On the
other hand, when the suspect set contains two nodes, one of
them may be legitimate. In this case, the two suspect nodes
usually have a disagreement, implicitly accusing each other
of lying. One may wish to identify who is the compromised
node from the suspect set by employing a more complex
agreement scheme. However, this is provably impossible under
certain circumstances, e.g., when a majority of nodes in a local
neighborhood are malicious [1].

In addition, we will regard the inability to communicate
between two nearby legitimate nodes caused by a natural node
(or link) failures (despite multiple retransmissions) also as
a malicious activity. This is reasonable because it is often
impossible to distinguish with absolute certainty between
faulty nodes (due to natural causes) and malicious nodes. Thus,
unless stated otherwise, a suspect set must contain either at
least one compromised node or at least one faulty node.

The design objective is defined as follows.

Fig. 2. A form of expensive secure acknowledgement. It contains the
signatures created in an onion manner by intermediate nodesn1, . . . , nN

on a path.M is a signed message sent by the source, andSi is the onion-
manner signature signed by thei-th intermediate nodeni on the path.

Definition 2 (Design objective):The design objective is to
ensuresecure deliveryof messages between two legitimate
nodes, and also to let CSs be informed of the suspect nodes
identified whenever messages are not correctly delivered, no
matter what forms of isolation attacks are launched.

B. Challenge

One could develop a solution to accomplish the above
design objective by extending the secure acknowledgement
schemes presented in the existing works [3], [4]. Specifically,
in this solution, the source requires a confirmation from
the destination through a known path. This confirmation is
delivered to the source in a form of secure acknowledgement,
which requires signatures from all intermediate nodes in
addition to the destination. The signatures of the intermediate
nodes are created in an “onion” manner (see Fig. 2). That
is, each intermediate node signs on the entire message of the
destination’s confirmation and all signatures accumulatedso
far. When an intermediate node does not receive a secure
acknowledgement within a bounded time, the node gives
up waiting and generates its own acknowledgement. This
acknowledgement is delivered to the source in the form of the
secure acknowledgement. Due to the onion-manner signatures,
the source can detect any deletion or modification of any
part of the secure acknowledgement, and also localize a
faulty/malicious node.

However, such a straightforward extension of the existing
works to attain the secure delivery (i.e., the first part of the
design objective) would be too costly due to the excessive use
of the expensive onion-manner signatures, and it would not
be scalable for large networks. Further, this type of protocols
may still have difficulty providing the secure guarantee in
Def. 2. Specifically, it is conceivable that such protocols may
ensure that, when the message delivery is unsuccessful, the
source nodecan find a suspect set. However, this detection
capability may be guaranteed only at the source node. Hence,
if the source nodes are within an isolated region including
no CS, they will have no way to deliver the detected suspect
sets to a CS. A trivial remedy so that CSs can collect the
detected suspect sets would be to probe all nodes individually
for detection results. However, if not designed carefully,such a
naı̈ve approach would be very costly. Hence, it is still unclear
how CSs (thus the system administrator) can efficiently collect
detected suspect sets from nodes.

In summary, there remain two major challenges in finding
a low-complexitysolution that attains the design objective
(Def. 2):

4

Algorithm 1 Procedure for the sourceS
1: Sends an MSG toN1

2: Sets a timer that will go off after timets, and waits for
an ACK/NACK from N1

3: if receives an ACK/NACK withints then
4: Verifies the followings:

i) MAC for the ACK/NACK (generated byN1)
ii) D’s signature (in the ACK) or the accuser’s signature

(in the NACK)

5: if finds an incorrect MAC/signaturethen
6: Terminates and concludes thatN1 is compromised
7: else
8: if it is an ACK then
9: Terminates and concludes that the delivery was

successful
10: else
11: Let Ns and Na be the suspect node and the

accuser, respectively, reported in the NACK
Terminates and concludes thatNs and Na are
suspect

12: end if
13: end if
14: else
15: Terminates and concludes thatN1 is compromised
16: end if

1) How can we design alow-complexityprotocol that can
guarantee the secure delivery of messages between two
legitimate nodes?

2) How can CSs collect the detected suspect sets in acost-
effectivemanner?

In the following two sections, we develop two protocols, called
LSDP and LSCP, to address these two challenges respectively.
LSDP is used by nodes for secure delivery of messages among
them, and LSCP is employed by CSs to securely collect
detected suspect sets from nodes so that they can be removed
or reprogramed. LSDP and LSCP can reduce the overhead
by an order of magnitude and half an order of magnitude,
respectively, compared to the straightforward approach (see
Section VI).

IV. L OW-COMPLEXITY SECURE DELIVERY PROTOCOL

In this section, we present theLow-complexity Secure Deliv-
ery Protocol, termed LSDP. It ensures that a legitimate source
S securely delivers a message to a legitimate destination
D through a given path. The basic idea of LSDP is to let
each node take the responsibility of securely delivering the
source’s message from itself to the destination. To achievethis,
each node makes use of a time-bounded secure acknowledge-
ment (ACK) and a negative-acknowledgement (NACK). The
key difference from the straightforward approach described
in Section III-B is that LSDP requiresat most oneMAC
in any packet, except the source’s signature signed on the
message (see Fig. 3). As a result, LSDP reduces the overhead

Algorithm 2 Procedure for intermediate nodesNi for i ∈
{1, . . . , n− 1} and destinationD = Nn

1: // Denote a suspect node by SN andN0 = S
2: Waits for an MSG fromNi−1

3: if receives an MSGthen
4: Verifies the followings:

i) MAC for the MSG (generated byNi−1)
ii) S ’s signature in the MSG

5: if finds an incorrect MAC/signaturethen
6: Generates a NACK with SN= Ni−1, then sends the

NACK to Ni−1 // terminates
7: else
8: if Ni is not the destinationthen
9: Replaces theNi−1’s MAC by Ni’s MAC, then

sends the MSG withNi’s MAC to Ni+1

10: Sets a timer that will go off after timeti, then waits
for an ACK/NACK from Ni+1

11: if receives an ACK/NACK withinti then
12: Verifies the followings:

i) MAC for ACK/NACK (generated byNi+1)
ii) D’s signature (in the ACK) or the accuser’s

signature (in the NACK)

13: if finds an incorrect MAC/signaturethen
14: Generates a NACK with SN= Ni+1, then

sends the NACK toNi−1 // terminates
15: else
16: Replaces theNi+1’s MAC by Ni’s MAC,

then sends the ACK/NACK withNi’s MAC
to Ni−1 // terminates

17: end if
18: else
19: Generates a NACK with SN= Ni+1, then sends

the NACK toNi−1 // terminates
20: end if
21: else
22: Generates an ACK, then sends the ACK toNn //

terminates
23: end if
24: end if
25: end if

significantly, i.e., by an order-of-magnitude smaller thanthe
straightforward approach (see Section VI).

The basic procedure of LSDP is described in Alg. 1 for
the source node and Alg. 2 for the intermediate nodes and
the destination. In the procedure, we assume that the path
consists of nodesS, N1, . . . , Nn−1, D. There are three types
of messages exchanged among nodes, which contain the
following information:

• MSG: 1)S ’s message; 2)S ’s signature signed on theS ’s
message with theS ’s private key

• ACK: 1) D’s confirmation; 2)D’s signature signed on
theD’s confirmation with theD’s private key

• NACK: 1) a suspect node; 2) the accuser’s ID (i.e., the

5

Fig. 3. The format of any packet sent at an intermediate nodeNi in LSDP.
It containsonly oneMAC (except the source’s signature on the messageM).

ID of the node that accuses the suspect node); 3) the
accuser’s signature signed on the concatenation of the
suspect node and the accuser’s ID with the accuser’s
private key.

Each message is sent with the MAC generated by the sender,
only when the sender is not the originator of the message. The
MAC is for the authentication of the message. Note that since
a MAC for a message is generated by the secret key shared
only between the sender and the receiver. If both the nodes are
legitimate, the MAC cannot be generated by any other nodes.
By using the MACs (generated using the same symmetric
key), instead of digital signatures (generated using asymmetric
key), we make the protocol computationally light. The digital
signatures may still be used before a pairwise shared key is
established between the source and each intermediate node.
This pairwise shared key between the two nodes can be
established on demand by the source, which generates and
sends a key by encrypting it with its private key.

The time-out values, i.e.,ts for S ’s timer (in Alg. 1) andtn
for Ni’s timer (in Alg. 2), can be set by taking into account the
number of nodes in the path and the time that each node needs
to successfully send a message following Alg. 2 (allowing
multiple retransmissions for unreliable wireless links).For
example, suppose that the number of the intermediate nodes
in the path isn − 1 andT is a sufficient time for each node
to successfully send a message following Alg. 2. We can set
the time-outs asts = (2n− 1)T and ti = (2(n− i)− 1)T .

LSDP attains the following security guarantee.
Theorem1: Through LSDP, a legitimate node cansecurely

delivera message to another legitimate node through a known
path.

Proof: After S sends an MSG toN1, there will be three
possible cases;S receives 1) nothing; 2) ACK; 3) NACK.

Case 1: Receive nothing.In this case (line 15 in Alg. 1),
S will conclude thatN1 is compromised. This conclusion is
correct since otherwise, i.e., ifN1 is legitimate,N1 should
have sent either an ACK or a NACK toS following Alg. 2.
Case 2: Receives ACK.In this case, there are two possi-
bilities: i) the ACK contains an incorrect MAC/signature; ii)
both the MAC and the signature are correct. In the first case
(line 6 in Alg. 1), if the MAC is incorrect, obviously,N1

must be compromised. Or, if theD’s signature is incorrect, it
must be true that theD’s confirmation or signature has been
modified by eitherN1 or another intermediate node. Note that,
in the latter case, ifN1 is legitimate,N1 should have sent a
NACK following Alg. 2. Hence, for the both cases,N1 must
be compromised. In the second case (line 9 in Alg. 1), i.e., if
both the MAC and theD’s signature in the ACK are correct,
clearly, the MSG must have been correctly delivered toD.

Thus, for both of the possibilities in this Case 2,S will either
correctly deliver the MSG or obtain a correct suspect set.

Case 3: Receives NACK.In this case, there are two pos-
sibilities: i) the NACK contains an incorrect MAC/signature;
ii) both the MAC and the signature are correct. In the first
case (line 6 in Alg. 1),N1 must be compromised for the same
reason as in the case when the ACK contains an incorrect
MAC/signature (in the Case 2). In the second case (line 11 in
Alg. 1), we will show that{Ns, Na} forms a correct suspect
set. If the accuserNa is compromised, then by definition,
{Ns, Na} forms a correct suspect set. Hence, we only need
to consider the other case whereNa is legitimate and to show
thatNs is compromised. Since theNa’s signature in NACK is
correct, it must beNa who has generated the NACK received
by S. Also, according to Alg. 2, the reason whyNa generated
the NACK must be either becauseNa had found an incorrect
MAC/signature in the ACK/NACK fromNs (lines 6 and 14
in Alg. 2), or becauseNa had received nothing fromNs until
its timer expired (line 19 in Alg. 2). Obviously, none of these
two cases would have happened ifNs is legitimate (recall
that no link failure is assumed). This means thatNs must be
compromised, and hence{Ns, Na} forms a correct suspect
set. Thus, for the both possibilities in this Case 3,S obtains
a correct suspect set.

Therefore, for all of the Cases 1, 2 and 3, it is true thatS
will either correctly deliver the MSG toD, or obtain a correct
suspect set. Thus, the theorem follows.

This theorem means that given a path, any legitimate node
can securely deliver a message to another legitimate node
through Alg. 1 and Alg. 2. These paths can be given by
the network administrator (since nodes are stationary), or
can be found through any of the existing routing protocols
(e.g., OSPF) when nodes were initially deployed. In fact, to
make the message delivery even more reliable, each source
can compute multiple disjoint paths to the destination. Our
protocol ensures that for each path, a suspect set will be
identified if the message is not delivered correctly. Thus, if
one path fails, the source can try another path that does not
contain the detected suspect nodes.

V. L OW-COMPLEXITY SECURE COLLECTION PROTOCOL

In this section, we address the second challenge stated in
Section III-B. Our solution approach is to have CSs collect
detected suspect sets from nodes. A trivial solution would be
to let CSs probe nodes one by one by employing LSDP. Then,
in the returned ACK, each node can report the suspect sets
that it has identified. However, such a trivial solution would
be costly because probing all nodes individually creates a large
number of messages in the network. This solution would not
only make CSs and their neighbors overloaded, but also incur
high overhead to the entire network, i.e., high expense on
bandwidth, energy and computational resources. Ideally, we
would like to have a more efficient solution that can probe a
large number of nodes in one round. To this end, we develop
theLow-complexity Secure Collection Protocol, termed LSCP.
The basic idea of LSCP is to divide a path of the nodes to

6

Fig. 4. LSCP divides a path into multiple sections, and each section has a
section inspector (SI) that takes a responsibility to gather the detected suspect
nodes in its section and include them into the CT.

Fig. 5. The format of CT sent at the end of sectionn in LSCP. It has a clear
distinction from the expensive secure acknowledgement (inFig. 2): it contains
only oneaggregated signature for the detected suspect sets fromeach section,
i.e., all nodes in the section.SSi andASi denote the detected suspect sets
collected in sectioni and the aggregated signature for sectioni that is signed
on top ofSi−1 aggregately by the all nodes in the section, respectively.

be probed into multiple sections and appoint a node in each
section as asection inspector(SI) (see Fig. 4). Each SI gathers
detected suspect sets from nodes in its section and includes
them into acollection token(CT) sent by a CS.

However, such a simple use of the SIs alone would not
achieve the goal of the end-to-end secure collection, sinceSIs
may be compromised. Note that a compromised SI may not
include certain detected suspect sets into the CT. Hence, our
main challenge in designing LSCP is how to develop alow-
complexityprotocol to ensure the end-to-end secure collection
along a path ofpotentially compromisedSIs, which can also
collude. The key idea to achieve this goal is to use a single
“aggregated signature” for a verifiable proof by which the
CS can confirm that every node in each section received
and verified the CT. Here, the node verifies the CT to check
whether the SI in its section has indeed included into the CT
all of its detected suspect sets that the SI had gathered.

The aggregated signature is constructed as follows. Suppose
that there are nodesN1, · · · , NI in a section. Letkpri andkpui
be theNi’s private key and public key, respectively. Denote
the encryption and the decryption of a messageM with a key
k by E(M,k) and D(M,k), respectively. Also, denote the
aggregated signature ofNi on SM by SGNi, whereSM is an
SI’s signature signed on a messageM . We create SGNi as
the following: SGNj = E(SGNj−1, k

pr
j) for j ∈ {1, . . . , i},

where SGN0 = SM . Then, the SI in the next section can
verify the correctness of SGNI by the following steps: the
SI first decrypts it sequentially with the nodes’ public keys,
i.e., SGNi−1 = D(SGNi, k

pu
i) for i ∈ {I, . . . , 1}. At the end

of this process, the SI verifies the correctness of SGN0, i.e.,
whether SGN0 is indeed the SI’s signature signed onM . Note
that the SI needs onlyM and asingleaggregated signature to
verify that all nodes in its section have signed onM .

The procedure of LSCP is described in Alg. 3, 4 and 5.
Here, the source, i.e., a CS, sends a CT through a path of
the nodes that the source wants to probe for detected suspect
sets. A CT collects the detected suspect sets from the nodes on

Algorithm 3 Procedure for the sourceS
1: Sends a CT to SI1
2: Sets a timer that will go off after timets, and waits for

an ACK/NACK from SI1
3: if receives an ACK/NACK withints then
4: Verifies the followings:

i) MAC for the ACK/NACK (generated by SI1)
ii) D’s signature (in the ACK) or the accuser’s signature

(in the NACK)
iii) Aggregated signatures in the CT, which are verified

in the reverse order of the path

5: if it is an ACK then
6: if MAC and all signatures in the ACK are correct

then
7: Terminates and concludes that the CT is correct
8: else if MAC or D’s signature is incorrectthen
9: Terminates and concludes that SI1 is compromised

10: else
11: // i.e., if finds an incorrect aggregated signature

Let the sectionn be the first section where an
incorrect signature is found
Terminates and concludes that SIn+1 is compro-
mised

12: end if
13: else
14: // i.e., if it is a NACK
15: if finds an incorrect MAC/signature in the NACK

then
16: Terminates and concludes that SI1 is compromised
17: else
18: Let Xs and Xa be the suspect node and the

accuser, respectively, reported in the NACK
Terminates and concludes thatXs and Xa are
suspect

19: end if
20: end if
21: else
22: Terminates and concludes that SI1 is compromised
23: end if

the path, and delivers them to the destination, i.e,. another CS.
Depending on whether the source needs to collect the detected
suspect sets or not, which is an option for the network operator
using LSCP, the CT may or may not be piggybacked on the
ACK to return to the source. If the CT returns to the source
(CS), for which Algs. 3, 4 and 5 are presented, the source
verifies the signatures in the CT and identifies a suspect set if
needed. If it does not, the destination (CS) instead performs
these verification and identification procedures. The path is
divided into multiple sections such that the numbers of nodes
in the sections are as equal as possible. An SI is also a node,
but has the following extra duties: (a) to gather the detected
suspect sets from the nodes in its section; (b) to include them
into the CT; and (c) to sign on the entire CT using its signature.

7

Algorithm 4 Procedure for nodeNi

1: // Assume thatNi is in sectionn (where SIn is in charge)
2: // SN and SS denote a suspect node and a suspect set
3: Waits for a CT from its previous nodeP (= Ni−1 or SIn)
4: if receives a CTthen
5: Verifies the followings in the CT:

i) P ’s aggregated signature
ii) Whether the SSs sent to SIn are all included

6: if theP ’s aggregated signature is incorrectthen
7: Generates a NACK with SN= P , then sends the

NACK to P // terminates
8: else if some of the SSs sent to SIn are missingthen
9: Generates a NACK with SN= SIn, then sends the

NACK to P // terminates
10: else
11: Generates an aggregated signature by signing on the

P ’s aggregated signature with its private key
12: Replaces theP ’s aggregated signature in the CT with

the new one
13: Sends the CT to the next node, then performs the

procedure in lines 10–20 in Alg. 2 // terminates
14: end if
15: end if

The CT initially contains only a signed request message (like
an MSG). Thereafter, at each SI, the CT gains two additional
attachments: the suspect sets detected in the section and the
aggregated signature for the section (see Fig. 5). Here, the
suspect sets are, in fact, the NACKs generated by the accusers,
and each suspect set consists of the suspect node and the
accuser included in a NACK. Thus, a false accuser is also
contained in the suspect set.

The local collection of detected suspect sets at each SI can
be done by the SI in the following manner: upon receiving a
CT, it individually probes the nodes in its section using LSDP.
Or, to facilitate the collection process, each node in a section
uses LSDP to securely deliver the suspect sets whenever it
detects. However, both of these potential procedures have an
issue: in the former, a compromised SI may not probe certain
nodes in its section; in the latter, a compromised node may
prevent a legitimate node from delivering the detected suspect
sets to the SI. Note that, in the latter case, the legitimate node
would find a suspect set (due to the guarantee of LSDP), but
still this suspect set is known to only that node, not to a CS.
To resolve this issue, nodes perform the following additional
procedure: if a node either receives a CT without being probed
by its SI (in the former case), or finds an unsuccessful delivery
of the detected suspect sets to its SI (in the latter case),
then upon receiving a CT, the node drops it and sends a
NACK containing the detected suspect node toward the source,
i.e., a CS. (Here, the detected suspect node would be the
compromised SI or the newly found suspect node.) Then,
due to the guarantee of LSCP (Theorem 2, which we will
show later), either the NACK will be correctly delivered to

Algorithm 5 Procedure for section inspector SIn

1: // SN and SS denote a suspect node and a suspect set
2: // If SIn = SI1, thenNi andNi’s aggregated signature in

the procedure below are replaced byS andS ’s signature
3: Wait for a CT from the previous nodeNi

4: if receives a CTthen
5: Verifies theNi’s aggregated signature in the CT
6: if theNi’s aggregated signature is incorrectthen
7: Generates a NACK with SN= Ni, then sends the

NACK to Ni // terminates
8: else
9: if SIn is not the destinationthen

10: Attaches to the CT the followings:

i) Ni’s aggregated signature
ii) the SSs sent from the nodes in its section and

the SSs detected by itself

11: Signs on the entire CT, including the signatures
and SSs accumulated so far, with its private key

12: Sends the signed CT to the next node, then follows
the procedure in lines 10–20 in Alg. 2 // terminates

13: else
14: Attaches theNi’s aggregated signature and the SSs

detected by itself to the CT, and signs on the entire
CT with its private key

15: Generates an ACK of the signed CT, then sends
the ACK toNi // terminates

16: end if
17: end if
18: end if

the source (CS), or the CS will find a suspect set. In this way,
we can ensure that either each node can correctly deliver its
detected suspect sets to its SI, or a CS can find a suspect set.

Note that the key idea of using the aggregated signatures
is embedded in Alg. 4 (in line 5). The first verification is
to check whether SIn has included all of the detected suspect
sets reported byNi into the CT. Second, the verification of the
aggregated signature is to prevent a possible wormhole attack
launched by two (or more) colluding compromised SIs. To
elaborate this, suppose that SIn and SIn+1 are compromised
and collude with each other to launch the following attack:
upon receiving a CT, SIn includes none of the suspect sets
detected in its section into the CT, and then sends the CT
directly to SIn+1 over an out-of-band channel (in wireless
networks) to bypass all the nodes in the section. However,
such a wormhole attack can be detected by the source (CS)
that verifies the aggregated signatures in the CT. Specifically,
the source verifies the aggregated signatures in the CT in the
reverse order of the path. On verification, the source would
find an incorrect aggregated signature in the sectionn, since
all nodes in this section are bypassed and thus none of their
signatures are aggregated. Thereafter, following Alg. 5, the CS
would conclude that SIn+1 is compromised.

The LSCP achieves the following security guarantee.

8

Theorem2: Through LSCP, a legitimate node can securely
collect (and deliver) messages from the intermediate nodeson
a known path (to another legitimate node).

Proof: After S sends a CT, there will be three possible
cases;S receives 1) nothing; 2) ACK; 3) NACK.

Case 1: Receive nothing.In this case (line 22 in Alg. 3),
S will obtain a correct suspect set, as shown in the Case 1 in
the proof of Theorem 1.

Case 2: Receives ACK.In this case (line 5 in Alg. 3), there
are three possibilities: i) the SI1’s MAC and all the signatures
in the ACK are correct; ii) the SI1’s MAC or theD’s signature
in the ACK is incorrect; iii) an aggregated signature in the CT
is incorrect. In the first case (line 7 in Alg. 3), clearly,S will
obtain a correct CT. In the second case (line 9 in Alg. 3), SI1

must be compromised, since otherwise, i.e., if SI1 is legitimate,
SI1 should have sent a NACK toS according to Alg. 4. In
the third case (line 11 in Alg. 3), if we assume that SIn+1

is legitimate, then upon receiving the CT, SIn+1 would have
found an incorrect signature in the CT and then have generated
a NACK. However, SIn+1 has sent the ACK violating the
protocol. Therefore, SIn+1 must be compromised. Thus, for
all of the three possibilities in this Case 2,S will either obtain
a correct CT or a correct suspect set.

Case 3: Receives NACK.In this case (line 14 in Alg. 3),
there are two possibilities: i) the NACK contains an incorrect
signature; ii) both MAC and signature in the NACK are
correct. In the first case (line 16 in Alg. 3), if SI1 is legitimate,
SI1 should have sent a NACK containing all correct signatures,
according to Alg. 4. However, this did not happen, and
therefore SI1 must be compromised. We now consider the
second case (line 18 in Alg. 3). We show that{Xs, Xa} forms
a correct suspect set. If the accuserXa is compromised, then
by definition,{Xs, Xa} forms a correct suspect set. Hence, we
only need to consider the other case, whereXa is legitimate,
and to show thatXs is compromised. Since all the signatures
in NACK are correct, it must beXa that has generated the
NACK received byS. Also, sinceXa is legitimate,Xa would
have generated the NACK due to one of the following events
being occurred: lines 7, 9 and 13—lines 14 and 19 in Alg. 2—
in Alg. 4, and lines 7 and 12—lines 14 and 19 in Alg. 2—in
Alg. 5. It is easy to verify that none of these events would
have happened ifXs is legitimate (recall that no link failure
is assumed). This means thatXs must be compromised, and
consequently{Xs, Xa} forms a correct suspect set. Thus, for
the both possibilities in this Case 3,S will obtain a correct
suspect set.

Therefore, for all the three cases,S will either obtain a
correct CT or a correct suspect set. Thus, the theorem follows.

VI. OVERHEAD ANALYSIS

In this section, we first evaluate the overhead of LSDP and
LSCP, and then compare with the overhead of the straight-
forward approach (described in Section III-B). We measure
the overhead of the protocols in terms of the total number
of cryptographic check values (i.e., signatures and MACs)

being transmitted throughout the protocol execution on a given
path. We use this metric since it is the major factor in the
increase of the payload size in the protocols. Thus, the metric
also determines how much extra network resources, i.e., the
bandwidth, energy and computational resources, are expended
due to the use of the protocol.

Overhead of LSDP. In LSDP, all types of the messages
exchanged between nodes contain only one signature. There-
fore, any packet, which may or may not include a MAC,
will contain at most two cryptographic check values. Thus,
the total number of cryptographic check values transmittedis
O(l), wherel is the number of nodes in the given path. Note
that this is the minimum level of cryptographic check values
transmitted for any protocol: for the security objective under
consideration, any packet at each node has to include at least
two cryptographic check values—one for the authenticationof
the source’s message and the other for the authentication of
the immediate sender of the packet.

Overhead of LSCP. For ease of exposition, suppose that
the given path consists ofl = h2 intermediate nodes (except
for the source and the destination). We divide the path into
h sections, each of which hash nodes including an SI. As a
CT travels across each section, the number of cryptographic
check values included in the CT increases only by one, due
to the aggregated signature for the section. Therefore, the
size of CT (thus ACK) grows linearly withh. Thus, any
packet contains at mostO(h) cryptographic check values.
It is easy to verify that, at each section, a total ofO(h2)
cryptographic check values are transmitted to perform the local
collection of detected suspect sets through LSDP. Since the
path consists ofh sections, the number of the cryptographic
check values transmitted to perform this location collection
for all sections isO(h3), i.e.,O(l

√
l). Thus, the total number

of the cryptographic check values transmitted isO(l
√
l).

We now compare the overhead of LSDP and LSCP with
that of the straightforward approach. In the straightforward
approach applied to the secure delivery and the secure col-
lection, the numbers of signatures to be attached in a packet
would grow linearly with the number of nodes in the path,
i.e., l, for both protocols. Hence, the total numbers of the
cryptographic check values transmitted are bothO(l2). On
the other hand, as shown above, the overhead of LSDP and
LSCP areO(l) and O(l

√
l), respectively. Thus, LSDP and

LSCP reduce the overhead by an order of magnitude and
half an order of magnitude, respectively, compared to the
straightforward approach.

VII. N UMERICAL RESULTS

In this section, we evaluate our protocols using simulations.
We compare the communication overhead and the compu-
tational overhead of our protocols to those of a straightfor-
ward extension of the existing schemes [3], [4] (described
in Section III-B). These two types of overhead are measured
by the total number of cryptographic check values (CCVs)
transmitted over a given path and the average number of CCVs
computed per node, respectively. We simulate the protocols

9

2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

number of hops

of

 C
C

V
s

tr
an

sm
itt

ed
 o

ve
r

pa
th

Straightforward−Delivery
Straightforward−Collection
LSDP
LSCP

(a) Normal scenario.

2 4 6 8 10 12 14 16
0

50

100

150

200

250

number of hops

of

 C
C

V
s

tr
an

sm
itt

ed
 o

ve
r

pa
th

Straightforward−Delivery
Straightforward−Collection
LSDP
LSCP

(b) Attack scenario.

Fig. 6. Communication overhead.

on one path of various lengths to see how the overhead grows
with the path length. For LSCP, we determine the number of
sections on a path by rounding the square root of the number of
hops (to make the numbers of nodes in the sections as equal
as possible). We consider two scenarios: normal and attack
scenarios. In the normal scenario, there is no malicious node
and thus the ACK will be correctly delivered to the source.
In the attack scenario, one of the intermediate nodes on the
path is compromised, and its position is randomly chosen with
equal probability to every node. The compromised node drops
either a message/CT toward the destination, or an ACK toward
the source. It randomly performs either of the two malicious
behaviors with equal probability. For this attack scenario, we
show the average overhead taken over 1000 times of the
simulation.

Figure 6 shows the communication overhead of the pro-
tocols for the two scenarios. In both figures, we observe
that our protocols—LSDP and LSCP—reduce the overhead
significantly. Further, this overhead reduction becomes larger
as the path length increases, as expected from the overhead
analysis in Section VI. Note the large overhead gap between
the straightforward extensions for the secure delivery and
for the secure collection. This is because the straightforward
extension for the secure collection has to attach one onion-
manner signature to CT at each intermediate node, and also
the returned ACK has to accompany with the CT including all
the signatures attached.

Figure 7 shows the computational overhead of the protocols
for normal scenario. Fig. 7(a) shows the average number of
CCVs computed per node. We observe that LSCP has increas-
ing computational overhead (where the abrupt decreases are
due to the number of sections being changed), while the others
have constant computational overhead. This is because LSCP
requires each node to decrypt the aggregated signature re-
ceived from its previous node, and the computational overhead
for this decryption increases linearly with the number of nodes
in the section. We can view this increasing computational
overhead of LSCP as the cost that LSCP pays for the reduction
of communication overhead. Fig. 7(b) shows the number of
CCVs computed at the source. We observe that LSDP and
LSCP require the source to compute less number of CCVs,
compared to those using the straightforward approach. From
this and the result in Fig. 7(a), we can see that our protocols

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

number of hops

of

 C
C

V
s

co
m

pu
te

d
pe

r
no

de

Straightforward−Delivery
Straightforward−Collection
LSDP
LSCP

(a) Per node.

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

number of hops

of

 C
C

V
s

co
m

pu
te

d
at

 s
ou

rc
e

Straightforward−Delivery
Straightforward−Collection
LSDP
LSCP

(b) At source node.

Fig. 7. Computational overhead (for normal scenario).

lower the computational load at the source by making the
load distributed over the nodes on the path. This is desirable,
especially for the networks that have a small number of
CSs (due to the high cost for their strong protection against
powerful adversaries). In LSCP, the high computation load at
the CSs will be distributed over all nodes in the network.

VIII. R ELATED WORK

There have been a large volume of works on defending
networks against malicious activities, especially in ad hoc
wireless networks. Nevertheless, most of the existing works
have paid little attention to the isolation attack, and hence
have little or limited effectiveness against the isolationattack.
Conventional secure routing protocols (e.g. [5]–[7]) provide
little help under the isolation attack. Most of the secure routing
protocols are based on the assumption that there exists a
secure route between the source and the destination, i.e.,
a route that consists entirely of legitimate nodes. However,
no such path would exist under the isolation attack. Path-
quality monitoring techniques (e.g., [8]–[11]) can raise an
alarm when misbehaviors by intermediate nodes on the path
are detected. However, they only detect misbehaviors on the
path, without identifying the malicious nodes. Overhearing-
based approaches (e.g., [12]–[17]), where nodes watch for
their neighbors by overhearing the neighbors’ communication
(exploiting the omni-propagation nature of wireless signals),
are effective against the basic black-hole attack or a weak form
of isolation attacks. That is, they are effective only when the
width of the malicious strip, which is the strip of the region
filled with compromised nodes (see Fig. 1 in Section II), is
thin. However, the overhearing-based approaches are ineffec-
tive to the stronger form of isolation attacks launched by mul-
tiple consecutive and colluding malicious nodes. Specifically,
in this stronger form of isolation attacks, the first malicious
node forwards a packet and then the subsequent malicious
node drops it. But, the first malicious node intentionally hides
(i.e., does not report) this fact, thereby prevents any legitimate
node from identifying which node has dropped the packet.

Recent works [2]–[4], including our own prior work, have
studied detecting and identifying malicious activities inthe
network. However, they have different focuses and approaches.
The works [3], [4] have proposed faulty-link localization
schemes against Byzantine [3] or packet-dropping [4] adver-

10

saries. These schemes use a form of secure acknowledgement
that requiresonion-mannersignatures (see Fig. 2) to identify
a faulty link. As we discussed in Section III-B, one could
extend these schemes to develop a defense mechanism against
the isolation attack. However, this would be very costly due
to the excessive use of the expensive onion-manner signatures
(refer to Section III-B for the detailed discussion). Further,
the works [3], [4] did not address our second challenge,
i.e., the cost-effective mechanism for CSs to collect detected
suspect sets from nodes. Our prior work [2] has proposed an
adversary identification protocol against Byzantine adversarial
nodes. It provides a security guarantee that those attainedby
our protocols are similar to. However, the work [2] focuses
on a different problem: timely and secure delivery of event
reports to a base station in wireless sensor networks. On the
other hand, our work targets more general application settings,
i.e., any-to-any communication, and focuses on reducing the
overhead for large networks. Also, our solution approach is
very different from that of [2]. Our protocols areon demand,
i.e., are used only when nodes need to send a packet or
collect messages from nodes, whereas the work [2] presents a
proactive protocol that periodically sends a packet to collect
event reports from nodes in a timely and secure manner.

IX. CONCLUSION

In this paper, we study defense mechanisms against the
network isolation attack to cyber-physical systems (CPS),in
which compromised nodes would isolate a region from the
rest of the network. The impact of this type of attack can be
devastating: without proper defense mechanisms, the adversary
can isolate a large region by compromising a (relatively) small
number of nodes that enclose the region. Assuming that the
compromised nodes wish not to be detected, we develop a
solution to defend against the isolation attack. Our solution
achieves the following provable security guarantee: either a
legitimate node can successfully deliver a message to another
legitimate node, or the network control center can identifya
pair of suspect nodes, which is guaranteed to contain at least
one compromised node. A key contribution of our proposed
solution is to achieve this guarantee with the overhead thatis
orders-of-magnitude smaller than existing baseline protocols.
Thus, our solution is scalable for large networks.

For future work, we plan to study the deployment issues,
including how to place the collecting stations and form the
collecting paths in the network, and the cost-performance
trade-offs of the proposed defense mechanisms.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Peasee, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, July 1982.

[2] J. Koo, D.-H. Shin, X. Lin, and S. Bagchi, “A Delay-Bounded
Event-Monitoring and Adversary-Identification Protocol in Resource-
Constraint Sensor Networks,”Elsevier Ad Hoc Networks, vol. 11, no. 6,
pp. 1820–1835, August 2013.

[3] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, andH. Rubens,
“ODSBR: An On-Demand Secure Byzantine Resilient Routing Protocol
for Wireless Ad Hoc Networks,”ACM Transactions on Information and
System Security (TISSEC), vol. 10, no. 4, pp. 1–35, January 2008.

[4] X. Zhang, A. Jain, and A. Perrig, “Packet-dropping Adversary Identifi-
cation for Data Plane Security,” inACM CoNEXT, 2008.

[5] P. Papadimitratos and Z. Haas, “Secure Routing for Mobile Ad Hoc
Networks,” in SCS CNDS, 2002.

[6] Y.-C. Hu, D. Johnson, and A. Perrig, “SEAD: Secure Efficient Distance
Vector Routing for Mobile Wireless Ad Hoc Networks,” inIEEE
WMCSA, 2002.

[7] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A SecureOn-Demand
Routing Protocol for Ad Hoc Networks,”Wireless Networks, vol. 11, no.
1-2, pp. 21–38, January 2005.

[8] N. G. Duffield and M. Grossglauser, “Trajectory Samplingfor Direct
Traffic Observation,”IEEE/ACM Transactions on Networking (TON),
vol. 9, no. 3, pp. 280–292, June 2001.

[9] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Improving Accuracy
in End-to-End Packet Loss Measurement,” inACM SIGCOMM, 2005.

[10] J. Sommers and N. Duffield, “Accurate and Efficient SLA Compliance
Monitoring,” in ACM SIGCOMM, 2007.

[11] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford, “Path-
Quality Monitoring in the Presence of Adversaries,” inACM SIGMET-
RICS, 2008.

[12] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbe-
havior in Mobile Ad Hoc Networks,” inACM MobiCom, 2000.

[13] I. Khalil, S. Bagchi, and N. Shroff, “LITEWORP: A Lightweight Coun-
termeasure for the Wormhole Attack in Multihop Wireless Networks,”
in IEEE/IFIP DSN, 2005.

[14] D.-H. Shin and S. Bagchi, “Optimal Monitoring in Multi-Channel Multi-
Radio Wireless Mesh Networks,” inACM MobiHoc, 2009.

[15] D.-H. Shin, S. Bagchi, and C.-C. Wang, “Distributed Online Channel
Assignment Toward Optimal Monitoring in Multi-Channel Wireless
Networks,” in IEEE INFOCOM, Mini-conference, 2012.

[16] D.-H. Shin and S. Bagchi, “An Optimization Framework for Monitoring
Multi-Channel Multi-Radio Wireless Mesh Networks,”Elsevier Ad Hoc
Networks, vol. 11, no. 3, pp. 926–943, May 2013.

[17] D.-H. Shin, S. Bagchi, and C.-C. Wang, “Toward Optimal Sniffer-
Channel Assignment for Reliable Monitoring in Multi-Channel Wireless
Networks,” in IEEE SECON, 2013.

	Introduction
	Network and Attack Model
	Network Model
	Considered Attack

	Design Objective and Research Challenge
	Design Objective
	Challenge

	Low-complexity Secure Delivery Protocol
	Low-complexity Secure Collection Protocol
	Overhead Analysis
	Numerical Results
	Related Work
	Conclusion
	References

